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Abstract. Electroproduction of light vector mesons is analyzed on the basis of handbag factorization. The
required generalized parton distributions are constructed from the CTEQ6 parton distributions with the
help of double distributions. The partonic subprocesses are calculated within the modified perturbative ap-
proach. The present work extends our previous analysis of the longitudinal cross section to the transverse
one and other observables related to both the corresponding amplitudes. Our results are compared to recent
experimental findings in detail.

1 Introduction

In a previous work [1] we analyzed electroproduction of
light vector mesons (V = ρ0, φ, ω) at HERA kinematics
within the handbag factorization scheme, which is based
on generalized parton distributions (GPDs) and hard par-
tonic subprocesses. The latter are calculated within the
modified perturbative approach [2] in which the quark
transverse momenta are retained. The emission and re-
absorption of partons from the proton is still treated in
collinear approximation. In the kinematical region acces-
sible to the HERA experiments that is characterized by a
Bjorken-x (xBj) of the order 10

−3, it is not unjustified to re-
strict oneself to the gluonic subprocess γ∗g→ V g and the
associated gluonic GPD Hg. In a recent paper [3] we ex-
tended that analysis to larger values of xBj (� 0.2) such
as accessible to the HERMES experiment, but restricting
ourselves to the analysis of the least model-dependent am-
plitude, namely the one for transitions from longitudinal
polarized virtual photons to vector mesons polarized in the
same manner, γ∗Lp→ VLp. This analysis necessitates the
inclusion of the quark subprocesses γ∗q→ V q (see Fig. 1)
and the associated GPDs for sea and valence quarks.
In this work we are going to complete the analysis

of vector-meson electroproduction by studying the ampli-
tude for transversely polarized photons andmesons, γ∗Tp→
VTp. The basic idea of modeling this amplitude has been
already described in [1] for the gluonic contribution. The
extension to the quark contribution is straightforward.The
crucial point at issue with the transverse amplitude is that
the quark transverse momenta, which are retained in the
modified perturbative approach in order to suppress con-
figurations with large transverse separations of the quark
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and antiquark forming the meson, regularize the infrared
singularities occurring in the transverse subprocess ampli-
tude in collinear approximation [4, 5] at the same time.
These special configurations seem to be responsible for the
excess of the leading-twist contribution to the longitudinal
cross section over experiment. Indeed, taking into account
the quark transverse momenta, fair agreement between
theory and experiment is achieved [3]. We are going to ap-
ply this modified handbag approach to vector-meson elec-
troproduction for energies,W , in the photon–proton center
of mass system (c.m.s.) between about 5 and 170GeV and
photon virtualities, Q2, between about 3 and 100GeV2,
while xBj is less than � 0.2. We will compare our results
in detail with recent data from HERA, COMPASS and
HERMES.
The GPDs H for quarks and gluons, which dominate

the process of interest for unpolarized protons at small xBj,
are constructed from the CTEQ6 parton distribution func-
tions (PDFs) [6] through double distributions [7, 8]. Apply-
ing the same model to the GPDs ˜H, we are also going to
estimate the so-called unnatural parity amplitudes and to
study their implications on spin density matrix elements
(SDMEs) and the double spin asymmetry ALL describ-
ing the correlation of the helicities of the beam and target
particles.
In [9] the electromagnetic form factors of the nucleon

have been used to extract the zero-skewness GPDs H, ˜H
and E for valence quarks. The forward limit of Eaval, the
analog of the PDFs, determined in [9], can be utilized for
the construction ofEaval at non-zero skewness with the dou-
ble distribution model. With these GPDs at our disposal
we will also estimate the SDMEs measurable with a trans-
versely polarized target as well as the transverse spin asym-
metry AUT.
The plan of the paper is as follows: in Sect. 2 we will

sketch the modified handbag approach. In Sect. 3 the dou-
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Fig. 1. Typical lowest order Feynman graphs for the γ∗g→ V g
(left) and γ∗q→ V q (right) subprocesses of meson electropro-
duction

ble distribution model for the GPD H is described. The
results on cross sections and SDMEs obtained within the
handbag approach are presented in Sects. 4 and 5, respec-
tively. Section 6 is devoted to an estimate of the role of the
GPDs ˜H and Sect. 7 to that of the GPDs E. We will con-
clude this paper by a summary (Sect. 8).

2 The handbag approach

We are interested in vector-meson electroproduction in
a kinematical region characterized by large Q2 and large
W but small xBj (� 0.2) and small invariant momentum
transfer −t. In the handbag approach, the amplitudes for
the process γ∗p→ V p, which can be extracted from vector-
meson electroproduction applying the one-photon approx-
imation, factorize into partonic subprocesses (see Fig. 1)
and GPDs comprising the soft, non-perturbative QCD. At
large Q2 the amplitude for γ∗Lp→ VLp dominates and fac-
torization has been shown to hold for it rigorously [10, 11].
The amplitudes for other photon–meson transitions are
suppressed by inverse powers of Q. Besides the longitu-
dinal amplitude we will consider only the transverse one,
γ∗Tp→ VTp in this work, which is the most important one
of the suppressed amplitudes at small −t. Proton helicity
flip is suppressed by

√
−t/2m (m being the proton’s mass)

and can be neglected in calculations of cross sections and
SDMEs obtained with unpolarized protons. In Sect. 7 we
will however estimate the size of the proton helicity-flip
amplitudes explicitly. It will turn out that these ampli-
tudes are indeed small.
In the region of small xBj the dominant contributions

are provided by the GPDH. To the proton helicity-non-flip
amplitude the GPDs contribute in the combination

H−
ξ2

1− ξ
E , (1)

where the skewness ξ is related to xBj by

ξ �
xBj

2−xBj

[

1+m2V /Q
2
]

. (2)

Here,mV denotes the mass of the vector meson. The GPD
E can therefore safely be ignored, since it is not expected
that it is much larger than the GPD H; see Sect. 7, where
we will take up this issue again. The GPD ˜H only con-
tributes to the transverse amplitude and can also be neg-
lected in calculations of the cross sections. In Sect. 6 we will

return to this problem and estimate the size of its contri-
bution. Since there is no parton helicity flip in the partonic
subprocesses to the accuracy we are calculating them, the
parton helicity-flip GPDs [12] do not occur.
The contributions from H to the γ∗p→ V p amplitudes

read (i= g, q, xg = 0 and xq =−1)

MNi
µ+,µ+(V ) =

e

2

∑

a

eaC
a
V

×

∫ 1

x̄i

dx̄
∑

λ

HV iµλ,µλ(x̄, ξ,Q
2, t= 0)Hi(x̄, ξ, t) .

(3)

The first sum runs over the quark flavors a and ea denotes
the quark charges in units of the positron charge e. The
non-zero flavor weight factors, CaV , read

C uρ =−C
d
ρ = C

u
ω = C

d
ω = 1/

√
2 , C sφ = 1 . (4)

The explicit helicities in (3) refer to the proton, while µ
is the helicity of the photon and meson and λ that of the
partons participating in the subprocess. Only the t depen-
dence of the GPDs is taken into account in the ampli-
tudes (3). That of the subprocess amplitudes H provides
corrections of order t/Q2, which we neglect throughout
this paper. In contrast to the subprocess amplitudes the
t dependence of the GPDs is scaled by a soft parameter,
actually by the slope of the diffraction peak.
There is a minimal value of −t allowed in the process of

interest

tmin =−4m
2 ξ2

1− ξ2
. (5)

As are other effects of order ξ2 (e.g. the GPD E), the tmin
effect is neglected.We note in passing that our helicities are
light-cone ones, which naturally occur in the handbag ap-
proach. The differences to the usual c.m.s. helicities are of
order m

√
−t/W 2 [12] and can be ignored in the kinemati-

cal region of interest in this work.
The full amplitude is given by a superposition of the

gluon and quark contributions:

MN =MNg+MNq , (6)

and it is normalized such that the partial cross sections for
γ∗p→ V p read (Λ is the usual Mandelstam function)

dσL(T)
dt

=
1

16π(W 2−m2)
√

Λ(W 2,−Q2,m2)

×|MN
0(+)+,0(+)+|

2 , (7)

which holds with regard to the above-mentioned simplifi-
cations. The cross sections integrated over t are denoted
by σL and σT. The full (non-separated) cross section for
γ∗p→ V p is

σ = σT+ εσL , (8)

in which ε is the ratio of longitudinal to transverse photon
fluxes. The power corrections of kinematical origin given
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in (2) and in the phase space factor (7) are taken into
account. With the exception of these kinematical effects
hadron masses are omitted otherwise. In the expression (7)
for the cross section the symmetry relation

MNi
−µν′,−µν =M

Ni
µν′,µν (9)

has been used, which is an obvious consequence of the
definition (3) and of parity conservation. This symmetry
relation coincides with the one that holds for natural parity
exchanges; we therefore mark this amplitude by a super-
scriptN . Since the contributions from ˜H to the amplitudes
obey the relation

MUi
−µν′,−µν =−M

Ui
µν′,µν , (10)

there are no interference terms betweenMNi andMUi in
the observables for unpolarized electroproduction of vec-
tor mesons as can easily be shown. Equation (10) is also
obtained for the exchange of a particle with unnatural par-
ity. In analogy to the contributions fromH the amplitudes

related to ˜H are marked by the superscript U . The contri-
bution | MU |2 is neglected in (7).
Let us now turn to the discussion of the subprocess am-

plitudes. As is well known, for the kinematics accessible
to current experiments, the handbag amplitude evaluated
in collinear approximation overestimates the longitudinal
cross section although with the tendency of approaching
experiment with increasing Q2 [1, 13, 14]. One may wonder
whether higher order perturbative QCD corrections to the
subprocesses may cure that deficiency. However, this does
not seem to be the case. NLO corrections [15, 16] are very
large due to BFKL-type logarithms ∼ ln 1/ξ and cancel to
a large extent the LO term at lowQ2 and low xBj. A recent
attempt [17] to resum higher orders with methods known
from deep inelastic lepton–nucleon scattering [18] seems to
indicate that the sum of all higher order corrections to the
LO term is not large. In view of this unsettled situation
it seems to be reasonable to proceed along the lines advo-
cated in [1, 3] by simply using the LO result and add power
corrections, especially since such corrections are anyway
needed in order to account for the large transverse cross
section σT. Once the higher order perturbative corrections
are better understood within the modified perturbative ap-
proach one may add them to the LO results. As long as
they are of reasonable magnitude there is no principal dif-
ficulty in this. It may merely be necessary to readjust the
GPDs and the meson wave functions appropriately.
As in our papers [1, 3] we will model the required power

corrections by employing the modified perturbative ap-
proach [2] in the calculation of the subprocesses. In this
approach the transverse momenta of the quark and anti-
quark, k⊥ (defined with respect to the meson’s momen-
tum), entering the meson are kept. In contrast to the situ-
ation at the mesonic vertex, the partons entering the sub-
process, are viewed as being emitted and reabsorbed by
the proton collinearly. This scenario is supported by the
fact that the GPDs describe the full proton, and their
k⊥ dependence therefore reflects the proton’s charge ra-
dius (〈k2⊥〉

1/2 � 200MeV), while the meson is generated

through its compact valence Fock state with a r.m.s. k⊥
of about 500MeV [19, 20]. Instead of a meson’s distribu-
tion amplitude allowance is to be made for a meson light-
cone wave function ΨV L(τ, k⊥) in the modified perturba-
tive approach [19, 20]. Here τ is the fraction of the light-
cone plus component of the meson’s momentum, q′, the
quark carries; the antiquark carries the fraction τ̄ = 1− τ .
Quark transverse momenta are accompanied by gluon ra-
diation. In [2] the gluon radiation has been calculated in
the form of a Sudakov factor exp[−S(τ,b, Q2)] to next-to-
leading-log approximation using resummation techniques
and having recourse to the renormalization group. The
quark–antiquark separation, b, in configuration space acts
as an infrared cut-off parameter. Radiative gluons with
wave lengths between the infrared cut-off and a lower limit
(related to the hard scale Q2) yield suppression; softer
gluons are part of the meson wave function, while harder
ones are an explicit part of the subprocess amplitude. Con-
gruously, the factorization scale is given by the quark–
antiquark separation, µF = 1/b, in the modified perturba-
tive approach [2, 3].
Since the resummation of the logarithms involved in the

Sudakov factor can only efficiently be performed in the im-
pact parameter space [2] we have to Fourier transform the
lowest order subprocess amplitudes to that space and to
multiply them with the Sudakov factor there. This leads to

HV iµλ,µλ =

∫

dτ d2b Ψ̂V L(τ,−b)F̂
i
µλ,µλ(x̄, ξ, τ,Q

2,b)

×αs(µR) exp
[

−S
(

τ,b, Q2
)]

. (11)

The two-dimensional Fourier transformation between the
canonically conjugated b and k⊥ spaces is defined by

f̂(b) =
1

(2π)2

∫

d2k⊥ exp [−ik⊥ ·b]f(k⊥) . (12)

The renormalization scale µR is taken to be the largest
mass scale appearing in the hard scattering amplitude,
i.e. µR =max(τQ, τ̄Q, 1/b). Since the bulk of the handbag
contribution to the amplitudes is accumulated in regions
where µR is smaller than 3 GeV we have to deal with three
active flavors. A value of 220MeV for ΛQCD is used in the
Sudakov factor and in the evaluation of αs from the one-
loop expression.
The hard scattering kernels F i or their Fourier trans-

form F̂ i occurring in (11) are computed from the pertinent
Feynman graphs; see Fig. 1. The result for the gluonic sub-
process is discussed in some detail in [1], and we refrain
from repeating the lengthy expressions here. For quarks,
on the other hand, the hard scattering kernel for longitudi-
nally polarized photons and mesons reads

Fq0+,0++F
q
0−,0− =−CF

√

2

Nc

Q

ξ
[Ts−Tu] , (13)

where Nc denotes the number of colors and CF = (N
2
c −

1)/(2Nc) is the usual color factor. For convenience we only
quote the sum over the quark helicities, since this is what
appears in (3). The denominators of the parton propaga-
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tors read

Ts =
1

k2⊥− τ(x̄− ξ)Q
2/(2ξ)− iε

,

Tu =
1

k2⊥+ τ̄(x̄+ ξ)Q
2/(2ξ)− iε

. (14)

In both the quark and the gluon propagators we only re-
tain k⊥ in the denominators of the parton propagators,
where it plays a crucial role. Its square competes with
terms ∝ τ(τ̄ )Q2, which become small in the end-point re-
gions where either τ or τ̄ tends to zero.
While for longitudinally polarized vector mesons the

transverse momentum of the quark is only needed for the
suppression of the leading-twist contribution (the k⊥→ 0
limit), it plays an even more important role in the case
of transverse polarization. In the collinear limit the spin
wave function of the meson is ΓV ∝� q′ � εV (±1), where εV
denotes the polarization vector of the meson. It, however,
leads to a vanishing contribution to the subprocess ampli-
tude, since the number of γ matrices in the Dirac trace1

that gives the hard scattering kernel is odd (see Fig. 1).2 If
one allows for quark transverse momenta a second term in
the covariant spin wave function appears

∆Γ νVKν =
1

√
2MV

{�q′ �εV , γν}K
ν , (15)

for which the number of γ matrices in the Dirac trace
is even. In (15) MV is a soft parameter of the order of
the vector-meson mass, e.g. a typical constituent quark
mass. The transversemomentum four-vectorK = [0, 0,k⊥]
is suitably defined as the quark–antiquark relative momen-
tum and represents one unit of orbital angular momentum
in a covariant manner [1]. Expanding now the hard scat-
tering kernel for transversely polarized vector mesons, one
finds

F i+λ,+λ(ξ, x̄, τ,Q
2,K) = F i+λ,+λ(ξ, x̄, τ,Q

2,k2⊥)

+∆F i ν+λ,+λ(ξ, x̄, τ,Q
2,k2⊥)Kν

+∆F i νµ+λ,+λ(ξ, x̄, τ,Q
2,k2⊥)KνKµ

+ . . . (16)

Higher order terms inKµ are neglected. In the spirit of the
modified perturbative approach, the k2⊥ terms in the prop-
agator denominators are kept, as has been done for the lon-
gitudinal amplitude. As already mentioned the first term
in (16), generated by �q′ �εV (±1) vanishes as a consequence
of the number of γ matrices in the trace and, evidently, the
second one as well after integration on k⊥. Hence, the third

1 For the quark subprocess the trace includes the hadronic
matrix element that defines the GPDs and is ∝ γ+ or ∝ γ+γ5.
2 Note that for longitudinally polarized vector mesons ε(0)�
q′/mV . Hence, the spin wave function is ∝�q

′ in this case up
to mass corrections. A mass term ∝mV � εV in the spin wave
function for transversely polarized vector mesons has been in-
vestigated [4, 5]. In collinear approximation this term leads to
an infrared singular twist-3 contribution. Such mass terms are
neglected by us.

term in (16) is the leading one for transversely polarized
mesons and leads to the subprocess amplitudes

HV i+λ,+λ =−
g⊥µν

2

∫

dτ
dk2⊥
16π2

k2⊥ΨVT(τ,k
2
⊥)∆F

iνµ
+λ,+λ ,

(17)

in which g⊥ is the transverse metric tensor.
3 Note that

the wave functions for longitudinally and transversely
polarized vector mesons are different in general. The
transverse amplitude is of order k2⊥/(MVQ). Noting that
〈k2⊥〉

1/2/MV is of order unity, one realizes that the trans-
verse amplitude is suppressed by

M+ν′,+ν ∝ 〈k
2
⊥〉
1/2/Q , (18)

with respect to the one for longitudinally polarized vector
mesons.
Working out the kernels, one finds after summation

over the parton helicity that the kernel for transverse pho-
ton and meson polarization is obtained from the longitudi-
nal one, (13), by the replacement

Ts−Tu −→
k2⊥
2

Q

MV
[TsTa−TuTb] . (19)

The new propagator denominators read

Ta =
1

τQ2+k2⊥
, Tb =

1

τ̄Q2+k2⊥
. (20)

We note in passing that Ts and Tu represent the denom-
inators of the gluon propagators in the LO subprocess
γ∗q→ V q, while Ta and Tb belong to the quark propagators
(see Fig. 1). With the help of partial fractioning (i= s, u
and j = a, b)

TiTj =
1

k2⊥
[ciTi+ cjTj ] , (21)

we can cast the Fourier transform of the transverse sub-
process amplitude into exactly the same form as for the
longitudinal one, (11). The kernel is then a linear combina-
tion of four Fourier transformed propagators.
The denominators of the parton propagators in (14) are

either of the type

T1 =
1

k2⊥+d1Q
2
, (22)

or

T2 =
1

k2⊥−d2(x̄± ξ)Q
2− iε

, (23)

where di ≥ 0. The Fourier transforms of these propagator
terms can readily be obtained:

T̂1 =
1

2π
K0(
√

d1 bQ) ,

T̂2 =
1

2π
K0

(

√

d2(±ξ− x̄) bQ
)

θ(±ξ− x̄)

+
i

4
H
(1)
0

(

√

d2(x̄± ξ)bQ
)

θ(x̄± ξ) , (24)

3 All its elements are zero except g11⊥ = g
22
⊥ =−1.
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where K0 and H
(1)
0 are the zeroth order modified Bessel

function of the second kind and the Hankel function,
respectively.

3 The double distribution model

As in [1, 3] the GPDs are constructed from the PDFs with
the help of double distributions [7, 8]. Since this construc-
tion is described in detail in our previous papers we will
only recapitulate a few basic elements of it [1, 3]. The main
advantage of this construction is the warranted polynomi-
ality of the resulting GPDs and the correct forward limit
ξ, t→ 0. It is well known that, at low x, the parton distri-
bution functions behave as powers δi of x. These powers are
assumed to be generated by Regge poles [21, 22]. We gener-
alize this behavior of the PDFs by assuming that the t de-
pendence of the double distributions and hence the GPDs
are also under control of Regge behavior. Linear Regge tra-
jectories are assumed for small −t:

αi = αi(0)+α
′
it , i= g, sea, val , (25)

with δi = αi(0) for quarks and, as a consequence of the fa-
miliar definition of the gluon GPD, which reduces to x̄g(x̄)
in the forward limit, δg = αg(0)−1 for gluons. The trajec-
tories are accompanied by Regge residues assumed to have
an exponential t dependence with parameters bi. The fol-
lowing ansatz for the double distributions associated with
the GPDs Hi is therefore employed [3]:

fi(β, α, t) = e
bit | β |−α

′
it hi(β)

×
Γ (2ni+2)

22ni+1Γ 2(ni+1)

[(1−|β|)2−α2]ni

(1−|β|)2ni+1
,

(26)

where

hg(β) = |β|g(|β|) , ng = 2 ,

hqsea(β) = qseaw(|β|)sign(β) , nsea = 2 ,

hqval(β) = qval(β)Θ(β) , nval = 1 . (27)

For the decomposition of the double distribution into a
valence and a sea contribution we follow the procedure pro-
posed in [12] and write

fqval(β, α, t) =
[

fq(β, α, t)+fq(−β, α, t)
]

Θ(β) ,

fqsea(β, α, t) = f
q(β, α, t)Θ(β)−fq(−β, α, t)Θ(−β) .

(28)

In the forward limit, ξ, t→ 0, this decomposition is con-
form the usual definition of sea- and valence-quark PDFs.
The GPDs are related to the double distributions by the

integral

Hi(x̄, ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dαδ(β+ ξα− x̄)fi(β, α, t) .

(29)

For convenience we employ an expansion of the PDFs
(β > 0)

hi(β) = β
−δi(1−β)2ni+1

3
∑

j=0

cijβ
j/2 , (30)

which is particularly useful at low β and allows us to per-
form the integral (29) term by term analytically; its use is
also convenient if the integral (29) is carried out numer-
ically. The factor (1−β)2ni+1 serves for canceling the cor-
responding factor in (26) and has the additional welcome
feature of roughly accounting for the β→ 1 behavior of the
PDFs. The ansatz (30) results in a corresponding expan-
sion of the GPDs

Hi(x̄, ξ, t) = e
bit

3
∑

j=0

cijHij(x̄, ξ, t) . (31)

The definition of the GPDs is completed by the relations

Hg(−x̄, ξ, t) =Hg(x̄, ξ, t) ,

Hqsea(−x̄, ξ, t) =−H
q
sea(x̄, ξ, t) , (32)

and

Hqval(x̄, ξ, t) = 0 , −1≤ x̄ <−ξ . (33)

In (29) the so-called D terms for the gluons and the flavor
singlet quark combination are ignored [23]. The D terms
ensure the appearance of the highest powers of the skew-
ness in the moments of the GPDs. They only contribute
to the less important real parts of the amplitudes since
their support is the region −ξ < x < ξ. The correspond-
ing imaginary parts are related to the GPDs at x̄= ξ(1+
2k2⊥/(τQ

2)), which lies outside the support of theD terms.
We take this in vindication of neglecting the D terms.
For the expansions of the PDFs we will use the same

parameters as in [3] with the exception of a little change.
ZEUS [24] now provides data on the cross section for ρ
production up to Q2 = 100GeV2, whereas in [3] the fits to
the CTEQ6M PDFs were made for Q2 ≤ 40GeV2. As one
may check, the CTEQ6M gluon and sea-quark PDFs are
not well described above 40 GeV2 by the expansion quoted
in [3], but the addition of a L2 term to δg,

δg = 0.10+0.06L−0.0027L
2 , (34)

improves the fits to the gluon and sea-quark PDFs con-
siderably, as can be seen from Fig. 2 (L = lnQ2/Q20 and
Q20 = 4GeV

2). The L2 term is irrelevant below 40 GeV2.
The valence quarks are not needed at high Q2. The pa-
rameters of the expansions (30) are quoted in Table 1. We
stress that with the exception of δg, they are identical to
those used in [3]. In the quoted ranges of Q2 and β the
fits to the PDFs agree very well with the CTEQ6M solu-
tion; they are always well inside the band of Hessian er-
rors quoted in [6]. Larger values of β are irrelevant to us,
since the region 0.5� β affects the real parts of the am-
plitudes only marginally; the contributions are less than
0.5%. From the fitted PDFs the GPDs are evaluated with
the help of (29).
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Fig. 2. Left: the CTEQ6 gluon PDF at Q2 =
100 GeV2 as compared to our fit (solid line).
The band indicates the Hessian errors of the
PDFs. Right: the gluon GPD Hq at ξ = 0.01
and t = 0. Solid line: Hg at the initial scale
4 GeV2. Dash-dotted (dashed) line: at the scale
of 40 GeV2 evolved with the Vinnikov code [27]
(approximate evolution)

Table 1. The parameters appearing in the expansion (30) of the PDFs (L= lnQ2/Q20, Q
2
0 =

4GeV2)

gluon strange uval dval

δ Eq. (34) 1+ δg 0.48 0.48

α′ 0.15 GeV−2 0.15 GeV−2 0.9 GeV−2 0.9 GeV−2

c0 2.23+0.362L 0.123+0.0003L 1.52+0.248L 0.76+0.248L
c1 5.43−7.00L −0.327−0.004L 2.88−0.940L 3.11−1.36L
c2 −34.0+22.5L 0.692−0.068L −0.095L −3.99+1.15L
c3 40.6−21.6L −0.486+0.038L 0 0

In an attempt to keep the GPDmodel simple we assume

Husea =H
d
sea = κsH

s
sea , (35)

where the flavor-symmetry breaking factor is parameter-
ized as

κs = 1+0.68/(1+0.52 lnQ
2/Q20) , (36)

as obtained from a fit to the CTEQ6M PDFs.
As in [3] we take for the slope of the gluon tra-

jectory the value α′g = 0.15GeV
−2. Since the sea-quark

PDFs are mainly driven by evolution for Q2 � 4 GeV2 it
is assumed that αsea(t) = αg(t). A standard trajectory
is adopted for the valence-quark Regge pole – αval(t) =
0.48+0.9GeV−2 t. The parameter of the gluon residue is
fixed from a fit against the HERA data for ρ [25] and φ
production [26]:

bg = bsea = 2.58GeV
−2+0.25GeV−2 ln

m2

Q2+m2
,

(37)

The ρ and φ slopes of the cross sections practically overlap
at HERA energies; there are only minor differences at low
Q2. The parameter bg given in (37) leads to a t dependence
of the differential cross section in perfect agreement with
the recent ZEUS data [24]. The parameter of the valence-
quark residue is taken to be zero. This is in accord with the
findings of the nucleon form factor analysis proposed in [9],
in which the zero-skewness GPDs have been determined.
We emphasize that the evolution of the GPDs is taken

into account by us only approximately through the evo-
lution of the PDFs. This is reasonable, since at low ξ the

imaginary part of the gluon (and sea quark) contribution
dominates, which is ∝ Hg(ξ, ξ, t) and therefore approxi-
mately equals 2ξg(2ξ) at low ξ (see, for instance [1]). Its
real part as well as the valence quark contributions are only
of importance near 4 GeV2, the initial value of the evolu-
tion. The very time-consuming numerical integration on
x,b and τ forces us to use this approximative treatment
of the evolution. In order to demonstrate the quality of
our approximation we compare in Fig. 2 the gluon GPD at
40GeV2 either obtained from our approximation or from
evolving Hg from the initial scale of 4 GeV2 using the evo-
lution code developed by Vinnikov [27]. Only minor differ-
ences are to be noticed.

4 Results on cross sections

Before we present our results obtained from the handbag
approachwe have to specify the meson wave functions used
in the evaluation of the amplitudes. As in [1, 3] we will take
Gaussian wave functions (j = L,T)

ΨV j(τ,k⊥) = 8π
2
√

2NcfV j(µF)a
2
V j

×
[

1+BV j2 (µF)C
3/2
2 (2τ −1)

]

× exp [−a2V jk
2
⊥/(τ τ̄)] . (38)

Transverse momentum integration leads to the meson dis-
tribution amplitudes for which we allow for the second
Gegenbauer moment besides the asymptotic form. The
meson decay constants for longitudinally polarized vector
mesons are known from the electronic decays of the vector
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mesons, while those for transversely polarized mesons are
taken from QCD sum rules [28]. In contrast to the decay
constants fV L the latter ones are scale dependent:

fVT(µF) = fVT(µ0)

(

αs(µF)

αs(µ0)

)4/27

. (39)

Note that the decay constants for transversely polarized
vector mesons always appear in the combination fVT/MV ,
i.e. there is only one independent parameter in practice. In
fact we use a typical constituent mass of 300MeV for MV
and the QCD sum rule result [28] fV T/fV L � 0.8 at the
scale of µ0 = 1GeV. The Gegenbauer coefficientsB

V L
2 have

been found to be zero in the analysis of the longitudinal
cross section [3]. Those for the transverse case are fitted to
the data on the σT or the cross section ratio R = σL/σT.
The Gegenbauer coefficients are scale dependent:

BV j2 (µF) =B
V j
2 (µ0)

(

αs(µF)

αs(µ0)

)γ2j

, (40)

where γ2L = 50/81 and γ2T = 40/81 [29]. Finally, the trans-
verse size parameters aV j in (38) are either fitted to σL
or to σT depending on the polarization of the vector me-
son. The values for the various parameters are compiled
in Table 2. Those for the longitudinal case are identical to
the parameters used in [3].
The assessment of the theoretical uncertainties deserves

special considerations. The results on the cross sections
(and other observables) are subject to parametric errors.
The main uncertainties stem from the Hessian errors of
the set of CTEQ6 PDFs. Since for the longitudinal cross
section the parameters of the corresponding wave func-
tions are adjusted so that good agreement between the
data on σL and the handbag results is achieved, there are
no substantial additional uncertainties from the longitudi-
nal wave function. Results for σL evaluated from sets of
PDFs other than CTEQ6 also fall into the error bands in
most cases (an exception is set for instance by the PDFs
determined in [30, 31]) provided these PDFs are treated in
analogy to the CTEQ6M set, i.e. they are fitted to the ex-
pansion (30) by forcing them to behave Regge-like with
powers δi as described above, and, if necessary, readjust-
ing the transverse size parameters. The uncertainties in
the ratio, R, of the longitudinal and transverse cross sec-
tions mainly arise from the uncertainties of the wave func-
tions for transversely polarized vector mesons (i.e. from
the Gegenbauer coefficients, the transverse size parameters
and from the ratio fVT/MV ). The errors due to those of the
GPDs or PDFs, which are mainly responsible for the the-

Table 2. The parameters appearing in the wave function (38),
quoted at the scale µ0 = 1GeV

parameter �L �T ϕL ϕT

fV [MeV] 209 167 221 177
aV [GeV

−1] 0.75 1.0 0.70 0.95

BV2 0.0 0.10 0.0 0.10

oretical uncertainties of the cross sections, cancel to a large
extent in the ratio.
The results for the longitudinal cross sections are the

same as in [3]. We refrain from showing them again. The
experimental data on the cross section ratio R are cus-
tomarily determined from the measured SDME r0400 by the
relation

R =
σL

σT
=
1

ε

r0400
1− r0400

. (41)

The SDME in (41) is understood to be integrated over the
full range of t available in a given experiment.4 The the-
oretical and experimental results on the ratio R are com-
pared in Figs. 3 and 4. In general we achieve very good
agreement with experiment, in particular with regard to
the theoretical uncertainties displayed as shaded bands in
the plots.
The ratio R is mildly energy dependent for W larger

than about 10 GeV, while, for lower energies, it exhibits
a somewhat stronger energy dependence, in particular at
larger values of Q2; see Fig. 4. This implies differences
in the energy dependences of σL and σT, which can be
traced back to the different hard scattering kernels (see
e.g. (19)) and the varying wave functions for longitudinally
and transversely polarized vector mesons, in particular to
the different values of the r.m.s. k⊥ (∼ 1/aV ). An energy
dependence of R seems to be indicated by the prelimi-
nary HERMES [35, 36] and COMPASS [38] data although
confirmation of this observation is demanded. Most of the
older experiments have rather large errors, so that a def-
inite conclusion on a possible W dependence cannot be
drawn at present. Unfortunately, for φ production there is
only one low energy data point available [37] and this point
is measured at the very low value of Q2 = 2.6 GeV2, which
lies outside the range where the handbag approach, in its
present form, can be trusted. We note that for φ produc-
tion the energy dependence ofR is even milder than for the
case of the ρ; the results for W = 10GeV practically fall
together with those at 75 GeV.
In Fig. 5 the handbag results on the ρ and φ cross sec-

tions are compared to experiment. Again good agreement
with the H1 [25, 32] and ZEUS [24, 26, 34] data is observed
in a large range of Q2. The leading-twist contribution to
these cross sections, i.e. σL evaluated in collinear approx-
imation, is also shown. Although the leading-twist con-
tribution approaches the experimental cross section with
increasing Q2 there is still a small difference of about 1.5σ
between both at Q2 = 100GeV2 for ρ production. Note
that even at that value of Q2 the transverse cross section,
which is included in the full one and also represents a power
correction to the leading-twist result, is not negligible; it
amounts to about 10%. The leading-twist contribution is
about 20% larger than the one obtained within the modi-
fied perturbative approach at Q2 = 100GeV2, i.e. the cor-
rections due the quark transverse momentum have not yet
disappeared completely. In Fig. 6 the energy dependence of

4 The cross sections σL and σT have been obtained from inte-
grating the differential cross sections over that range of t.
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Fig. 3. The ratio of longitudinal and transverse cross sections for � (left) and ϕ (right) production versus Q2 atW = 90GeV and
75 GeV, respectively. The data are taken from H1 [25, 32, 33] (solid squares) and ZEUS [26, 34] (open squares), respectively. The
recent ZEUS data [24] are shown as open triangles. The solid lines represent the handbag results with the shaded bands indicating
the uncertainties of the predictions

Fig. 4. Handbag results for R on � (left) and ϕ (right) production at W = 75(10 , 5) GeV shown as solid (dash-dotted, dashed)
line. The data are taken from [25, 26, 34]. Preliminary data from HERMES [35–37] (solid circle) and
COMPASS [38] (diamond). The error bands are only shown atW = 5GeV. For further notation refer to Fig. 3

Fig. 5. The Q2-dependence of the cross sections for � (left) and ϕ (right) production atW = 90 (�) and 75 GeV (�, ϕ). The data
are taken from ZEUS [24, 26, 34] and H1 [25, 32]. For � production atW = 75GeV the data and theoretical results are divided by
10 for ease of legibility. The dashed lines represent the leading-twist contribution. For further notation refer to Fig. 3

the ρ cross section at a set ofQ2 values is displayed.Within
errors agreement is seen with the ZEUS data [24]. This
is not a surprise, since the power δg, related to the inter-
cept of the gluonic Regge intercept, is fixed by the energy
dependence of the HERA data on the cross sections [3].
As is σL [3], the full cross section at HERA energies is
dominated by the gluon contribution, although the sea

quarks are not negligible. Including the interference with
the gluon the sea quarks contribute about 25% in the case
of the φ and 40% in the case of the ρ at Q2 = 4GeV2. The
larger sea-quark contribution in the latter case is due to
the flavor-symmetry breaking factor κs (36). Flavor sym-
metry breaking in the sea is important for the ratio of the
φ and ρ cross sections [3]. Neglecting the sea quarks or
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Fig. 6. Left: the cross section for � production versus W at a set of Q2 values. The data are taken from ZEUS [24]. For further
notation refer to Fig. 3. The error band at 6 GeV2 is omitted for ease of legibility. Right: the accumulation profile of the amplitude

in dependence of αcritc at Q2 = 4 (solid line) and 40 GeV2 (dashed line) atW = 75 GeV

assuming a flavor symmetric sea leads to an incorrect φ–
ρ ratio. Going to energies lower than about 10 GeV the
valence quark contributions gradually become perceptible
for ρ production. At, say, 5 GeV the valence quarks are
responsible for about 40% of the cross section. We stress
that the three contributions have to be added coherently.
There are substantial interference terms, which increase
the cross sections markedly. For instance, at W = 5GeV
and Q2 = 4GeV2, the ρ cross section is doubled by the in-
terference terms.
A remark concerning the t dependence of the differen-

tial cross sections is in order. As we pointed out in [3], the
cross sections drop exponentially with t to a very good ap-
proximation. Their slopes are approximately given by 2bg
(see (37)) plus a contribution from the gluonic Regge tra-
jectory (see (26) and [3]). At largeW the slopes of the dif-
ferential cross sections for longitudinally and transversely
polarized photons are the same, while, at low W , the va-
lence quarks generate small differences. Consequently, the
ratioR is nearly t independent – a fact that is in agreement
with the ZEUS measurement [24].
Finally, we check the theoretical consistency of the

modified perturbative approach. Consistency is meant in
the sense that the bulk of the perturbative contributions
should be accumulated in regions where the strong coup-
ling αs is sufficiently small. To find out whether or not this
is the case, we set the integrand in (11) equal to zero in
those regions where αs(µR)> α

crit
s , and evaluate, say, the

longitudinal cross section for ρ production as a function
of αcrits . Consulting Fig. 6, where the accumulation profile
is shown, one observes that almost the entire result is ac-
cumulated in a comparatively narrow region of αs around
0.4 at Q2 = 4GeV2 and 0.25 at 40GeV2. Thus the effect-
ive renormalization scales in these two cases are about 1.5
and 15 GeV2, respectively. Hence, our results on the cross
sections are theoretically self-consistent with regard to the
above-mentioned criterion. Contributions from the end-
point regions where the momentum fraction τ tends either
to zero or to one and where, in collinear approximation, the
renormalization scale becomes very small, are sufficiently
suppressed.

5 Results on spin density matrix elements

In a number of experiments [24, 25, 32, 38, 39] the SDMEs
have been extracted from the measured decay angular
distributions of the vector mesons. The formalism of the
SDMEs, i.e. their relations to the amplitudes for the
process γ∗p→ V p, has been developed by Schilling and
Wolf [40] a long time ago. This work has recently been re-
peated and extended to the case of a transversely polarized
target proton by Diehl [41]. Since in the experimental pa-
pers the notation of [40] is used throughout, we will adhere
to it here in order to facilitate comparison.
The SDMEs are given by properly normalized bilinear

combinations of γ∗p→ V p amplitudes. Due to the symme-
try relations (9) and (10) there are no interference terms
betweenMN andMU in the case of unpolarized electro-
production of vector mesons. The normalizations read

NL = 2
∑

ν′

| MN
0ν′,0+ |

2 ,

NT = 2
∑

ν′

[

| MN
+ν′,++ |

2 + |MU
+ν′,++ |

2
]

, (42)

where helicity-flip γ∗→ V transitions are neglected, as
we do throughout this work. Up to a phase space fac-
tor, see (7), the normalizations are the differential cross
sections for longitudinally and transversely polarized vec-
tor mesons. Since the SDMEs also provide a possibility to
study the role of ˜H, we do not ignore the contributions
from the corresponding amplitude MU

+ν′,++ in (42) for
later reference.
Obviously, the SDMEs are functions of Q2, t and W .

Due to limitations in statistics it is not possible to meas-
ure the SDMEs as functions of the three variables. Thus,
frequently the SDMEs are presented as functions of one
variable for average values of the other variables. For in-
stance, the SDMEs are quoted as a function of Q2 for an
average value of W and integrated over all t available in
a given experiment. Only in this case, and this is an im-
portant one to which we will mainly refer in the following,
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the normalizations NL and NT refer to the respective in-
tegrated cross sections σL and σT up to the phase-space
factor and eventually neglected suppressed amplitudes. If
for instance the SDMEs are presented as a function of t
the normalization represents differential cross sections at
a fixed value of t but integrated over certain ranges of Q2

andW .
The SDMEs allow for a separation of the absolute

values of the two amplitudes,MN
0+,0+ andM

N
++,++, and

for a test of their relative phases. Whether or not it is jus-
tified to neglect the other amplitudes can be examined as
well. The SDMEs r0400, r

1
1−1 and Im r

2
1−1 are related to the

cross section ratio R. In terms of the amplitudes we are
investigating these SDMEs read

r0400 =
2ε

NT+ εNL

∑

ν′

| MN
0ν′,0+ |

2 ,

r11−1 =−Im r
2
1−1

=
1

NT+ εNL

∑

ν′

[

|MN
+ν′,++ |

2 − |MU
+ν′,++ |

2
]

.

(43)

Neglecting the amplitudeMU too, these expressions sim-
plify to

1− r0400 = 2r
1
1−1 =−2Im r

2
1−1 =

1

1+ εR
. (44)

In Figs. 7–9 this prediction of our handbag approach is
compared to experiment. The agreement is in general good
within errors although with occasional exceptions. Thus,
for ρ production, r11−1 and Im r

2
1−1 are not perfectly re-

produced. On the other hand, their sum, measuring the
double flip transitions γ∗T→ V−T, is nicely in agreement
with zero. A further check is provided by the t dependence
of the SDMEs. Since in the handbag approach the t depen-
dence solely comes from the GPDs and these are identical
for the two amplitudes, the above SDMEs should be nearly

Fig. 7. The SDMEs for the � meson versus Q2

(in GeV2) at W = 75GeV. The data are taken
from [24, 25, 39]. Note the different scales at
the axis of ordinates. For further notation refer
to Fig. 3

flat in t, which is indeed the case experimentally within
errors [24, 25]. Hence, the above three SDMEs are consis-
tent with our assumptions and do not provide a significant

signal for helicity-flip amplitudes or contributions from ˜H.
TheW dependence of the handbag predictions is displayed
in Fig. 8. It is evidently very mild. In particular the re-
sults for the SDMEs atW = 75 and 90 GeV fall practically
together.
After having checked that the absolute values of our two

amplitudes are in fair agreement with experiment, we now
turn to their relative phase δLT. In terms of our two ampli-
tudes, the SDMEs relevant for the verification of the phase
read

Re r510 =−Im r
6
10 =

1
√
2

1

NT+ εNL
Re
[

MN
++,++M

N∗
0+,0+

]

=
1

2
√
2

√
R

1+ εR
cos δLT . (45)

The predictions for the SDMEs in the case of φ pro-
duction are shown in Figs. 9 and 10. Fair agreement with
experiments can be seen. For ρ production, on the other
hand, a conflict is to be noted; see Figs. 7 and 8. The
data [24, 25, 35, 36] require a rather large phase although
with strong fluctuations (10–30◦), while the handbag ap-
proach provides only a small value for it (e.g. δLT = 3.1

◦ at
W = 5GeV and Q2 = 3GeV2). Whether our model for the
γ∗T→ VT amplitude, which represents a power correction
to the leading γ∗L→ VL amplitude, is inadequate for this
detail needs further investigation. However, that the sum
Re r510+Im r

6
10 amounts to only 1% of the corresponding

difference of these SDME makes it clear that the neglected
helicity-flip γ∗→ V transitions in (45) are not responsible
for the observed conflict.
The HERMES collaboration has also measured the an-

gular distribution of the decay of the ρ in the case of a lon-
gitudinally polarized lepton beam. These measurements,
which have not yet been analyzed, will provide data on
other SDMEs [40]. For instance, the SDMEs Im r710 and
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Fig. 8. SDMEs for the � meson versus Q2 (in
GeV2) at W = 5, 10 and 75 GeV (dashed, dash-
dotted and solid line, respectively). Preliminary
data taken from HERMES [35, 36] (solid circles)
and COMPASS [38] (diamonds). Error bands are
only shown for W = 5GeV. For further notation
refer to Figs. 3 and 4

Fig. 9. SDMEs for the ϕ meson versus Q2

(in GeV2) at W = 75 GeV. The data are taken
from [26, 32]. For further notation refer to Fig. 3

Fig. 10. SDMEs for the ϕ meson versus Q2 (in
GeV2) atW = 5GeV

Re r810 also measure the phase δLT introduced in (45):

Im r710 =Re r
8
10 =

1

2
√
2

√
R

1+ εR
sin δLT . (46)

Predictions for these SDMEs are shown in Fig. 11. The
other polarized SDMEs are only sensitive to the suppressed
amplitudes; see Table 3.
In principle also the helicity-flip γ∗→ V transitions can

be calculated in the proposed handbag approach as well.
But these transitions are strongly suppressed with respect

to the amplitude M0+,0+ as the amplitude for γ
∗
T→ VT

transitions; see (18). In fact,

γ∗T→ VL ∝

√
−t

Q
,

γ∗L→ VT ∝

√
−t〈k2⊥〉

1/2

Q2
,

γ∗T→ V−T ∝
−t 〈k2⊥〉

1/2

Q3
, (47)
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Table 3. SDMEs controlled by helicity-flip γ∗→ V transitions

SDME amplitudes order

r500, r
8
00 (γ∗T→ VL)(γ

∗
L→ VL)

√
−t/Q

Re r0410, Re r
1
10, Im r

2
10, Im r

3
10 (γ∗T→ VL)(γ

∗
T→ VT)

√
−t〈k2⊥〉

1/2/Q2

r100 | (γ∗T→ VL) |
2 −t/Q2

r511, r
5
1−1, Im r

6
1−1 (γ∗L→ VT)(γ

∗
T→ VT)

√
−t〈k2⊥〉/Q

3

r811, r
8
1−1, Im r

7
1−1 (γ∗L→ VT)(γ

∗
T→ VT)

√
−t〈k2⊥〉/Q

3

r041−1, r
1
11, Im r

3
1−1 (γ∗T→ V−T)(γ

∗
T→ VT) −t〈k2⊥〉/Q

4

where the powers of
√
−t/Q follow from angular momen-

tum conservation and the factors 〈k2⊥〉
1/2/Q are from the

treatment of transversely polarized vector meson; see (18).
The suppression factors given in (47) engender the behav-
ior of the SDMEs for the helicity-flip γ∗→ V transitions
listed in Table 3. The most important helicity-flip ampli-
tude is the one for γ∗T→ VL transitions. It is most clearly
seen in r500 as an interference term with the dominant lon-
gitudinal amplitude. It is definitely non-zero, being of the
order of 0.1 for ρ and φ production in experiment [24, 25,
35, 36]. At least HERMES [35, 36] observes a t dependence
for it in agreement with expectation (∝

√
−t). The contri-

bution of the γ∗T→ VL amplitude to the cross sections, R
and r0400, is at the percent level and can safely be neglected.
The other SDMEs related to the γ∗T→ VL transitions are
experimentally compatible with zero within errors. The
only exception is to be seen in the recent high statistics
ZEUS data [24], where Im r210 and Re r

1
10 have very small

but non-zero for values of Q2 less than 10 GeV2. It would
be interesting to see whether their t dependencies are in
agreement with expectation. For the remaining SDMEs,
being related to the γ∗L→ VT and γ

∗
T→ V−T transitions,

there is no significant deviation from zero at large Q2 ex-
perimentally. In view of these remarks it is fair to conclude
that the neglect of the helicity-flip γ∗→ V transitions in
the cross sections for Q2 ≥ 3 GeV2 is justified.

Fig. 11. The SDMEs Im r710 and Re r
8
10 for � production ver-

sus Q2 at W = 5GeV. The data are taken from [35, 36]; solid
(open) circle is for Im r710 (Re r

8
10). For further notation refer

to Fig. 3

6 The role of ˜H

The expression for the amplitudeMU is the same as that
forMN given in (3), except that the sum of the subprocess
amplitudes is to be replaced by their difference:

MUi
µ+,µ+(V ) =

e

2

∑

a

eaC
a
V

×

∫ 1

x̄i

dx̄
[

HV iµ+,µ+−H
V i
µ−,µ−

]

˜Hi(x̄, ξ, t) .

(48)

The superposition of the various quark and gluon contribu-
tions is identical to that for the amplitudeMN . The unnat-
ural parity amplitudes satisfy the symmetry relation (10).
It is evident from (48) that parity conservation leads to
a vanishing longitudinal amplitude MU

0+,0+. The trans-
verse subprocess amplitude is the same as in (17) and (19),
except that in the latter equation a plus sign occurs be-
tween TsTa and TuTb now.
The GPDs ˜H are again modeled by the double distribu-

tion ansatz (26). With regard to the symmetry properties
of ˜H the functions ˜hi now take the form

h̃g(β) = |β|∆g(|β|)sign(β) ,

h̃qsea(β) = ∆qsea(|β|) ,

h̃qval(β) = ∆qval(β)Θ(β) . (49)

For the powers ni in the double distribution ansatz (26) the
same values are taken as for the GPDs Hi; see (27). The
decomposition of the double distribution into valence and
sea contributions is made by [12]

f̃qval(β, α, t) =
[

f̃q(β, α, t)− f̃q(−β, α, t)
]

Θ(β) ,

f̃qsea(β, α, t) = f̃
q(β, α, t)Θ(β)+ f̃q(−β, α, t)Θ(−β) .

(50)

The double distribution ansatz for ˜Hg is incomplete, be-
cause in the moments of this GPD the highest power of
ξ are lacking, which leads to difficulties with the analytic
properties of the amplitudes [42]. We ignore this prob-
lem here, since the contributions from ˜Hg seem to be
unimportant.
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Table 4. The parameters appearing in the expansion (30) of the polarized PDFs and the
forward limits of Ea. The latter are taken from [9]. The expansion (30) provides a fit to the
Blümlein–Böttcher PDFs [43] in the range 10−2 ≤ β ≤ 0.5 and 4 GeV2 ≤Q2 ≤ 40 GeV2. The
powers δ̃ are kept fixed in the fits to the PDFs

∆uval ∆dval euval edval

δ̃ 0.48 0.48 0.48 0.48
c̃0 0.61+0.033L −0.320−0.040L 2.204 −3.114
c̃1 0.410−0.377L −1.427−0.176L −2.204 8.096
c̃2 5.10−1.21L 0.692−0.068L 0.0 −6.477
c̃3 0.0 0.0 0.0 1.295

The required polarized parton distributions are taken
from [43] and expanded according to

h̃i(β) = β
−δ̃i (1−β) 2ni+1

3
∑

j=0

c̃ijβ
j , (51)

using only integer powers. The resulting expansion param-
eters c̃i and δ̃i are quoted in Table 4. It is expected that the
a1 Regge trajectory controls the low-x behavior of the po-
larized valence-quark PDFs. Since there are no recurrences
of the a1(1260), we are forced to assume the standard value
of 0.9 GeV−2 for the slope of the trajectory.5 Combining
this with the spin of the a1, we obtain αa1(0) �−0.36 for
the intercept. Such a low value is however in conflict with
the small-x behavior6 of the polarized valence-quark PDFs
determined in [43], for which the power is rather about 0.7.
As a compromise we therefore take the standard value of
0.48 for it. For the slope of the Regge trajectory we again
take the value of 0.9GeV2 and for its residue b̃val = 0.
The GPDs ˜Hi are obtained from the functions fi by the

integral (29). They satisfy the relations

˜Hg(−x̄, ξ, t) =− ˜Hg(x̄, ξ, t) ,

˜Hqsea(−x̄, ξ, t) = ˜H
q
sea(x̄, ξ, t) , (52)

and

˜Hqval(x̄, ξ, t) = 0 , −1≤ x̄ <−ξ . (53)

We checked that our proposed GPDs ˜Hval are in agreement
with the data on the axial form factor for −t� 0.6 GeV2
and with the low −t (low x) behavior of ˜H determined
in [9]. In constrast to the situation for H, ˜Huval and

˜Hdval
have opposite signs as a consequence of the behavior of
the polarized PDFs. The lowest moments of the latter are
known from β decays (see, for instance, [43]). The usual
assumption of a smooth behavior of the PDFs without
a change of sign leads to opposite signs of ∆uval and ∆dval.

5 Accepting exchange degeneracy for the a1 and η2(1617)
trajectories the slope of the trajectory is fixed by the meson
spectrum and is indeed 0.9 GeV−2.
6 Whether this is a consequence of lack of low-x data in the
PDF analysis or due to disregarded high-lying Regge cuts, is
unknown at present.

As our numerical studies reveal, the gluon and sea-quark
contributions toMU are very small and compensate each
other to a large extent, since the gluonic and sea-quark
GPDs ˜H have opposite signs. Their combined contribu-
tions are practically negligible. This is the reason why we
quote only the expansion parameters of h̃i for the valence
quarks in Table 4.
Neglecting as in the preceding sections proton helicity

flips and photon–meson transitions other than L→ L and
T→ T, one can project out the unnatural parity ampli-
tude for T→ T transitions from a particular combination
of SDMEs (see (43)):

U =
1

2

[

1− r0400−2r
1
1−1

]

=
2

NT+ εNL
|MU++,++ |

2 .

(54)

This is the unnatural parity part of NT scaled by NT+
εNL; see (42). Integrating over t one arrives at a cross
section σU defined in analogy to σT in (7). Evaluating
this cross section for ρ production from the amplitudes
given in (3) and (48) and using the GPDs ˜H described
above, we find the results shown in Fig. 12. The cross
section σU (ρ) is rather small but in agreement with the
preliminary HERMES result [35, 36] at Q2 = 2.88GeV2

within an admittedly large error. For larger energies our
approach will lead to even smaller values for σU , since
the valence-quark contribution disappears and, as we men-
tioned above, the combined gluon and sea contribution is
very small (the typical size of gluon plus sea-quark contri-
bution to σU (ρ) is 0.013 nb).We note that for ρ production,
the H1 data [25] provide values for σU that are compat-
ible with zero (e.g. at Q2 = 3GeV2, σU/σ = 0.03±0.07),
while the ZEUS results [24] are about 1.5σ above zero (e.g.
atQ2 � 3.4 GeV2, σU/σ = 0.03±0.02). Both experimental
results are in agreement with our estimates within errors.
An immediate consequence of the cancellation of gluon and
sea contributions to the unnatural parity amplitude is that
σU for φ production is very small – in fact compatible with
zero. This is in agreement with the preliminary HERMES
data [37] and with the H1 data [32]. Thus, there is indica-
tion from both theory and experiment that σU for ρ and
φ production is small. Its neglect in σT seems to be jus-
tified. A larger cross section σU is to be expected for ω
production, because the combination eu ˜H

u
val+ ed

˜Hdval oc-

curs (see (4)), which is larger than eu ˜H
u
val− ed

˜Hdval given

the relative sign of ˜Huval and
˜Hdval.
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Fig. 12. Left: the ratio of σU and σ for � production versus Q
2 at W = 5GeV. The data are taken from HERMES [35, 36].

The solid (dashed , dash-dotted) line represents our estimate (obtained with euH
u
val+ edH

d
val, with euH

u
val− edH

d
val); see text.

Right: the helicity correlation ALL for � production at W = 5(10) GeV dashed (dash-dotted) line. The data are taken from
COMPASS [48] and HERMES [49]. For other notation refer to Figs. 3 and 4

One may wonder whether or not it is possible to gen-
erate a value for σU as large as, say, the face value of
the preliminary HERMES result [35, 36] by using GPDs
constructed from the polarized PDFs via the double dis-
tribution ansatz. In order to examine this issue we recall
that the polarized PDFs are the difference of PDFs for
helicity parallel and anti-parallel to that one of the pro-
ton, while the unpolarized PDFs represent their sum.
Suppose the gluon and sea-quark contributions still can-
cel and assume now that the helicity-parallel distribu-
tions dominate, which, in the limit x→ 1, follows from
QCD [44]. In this case the double distribution ansatz
leads to ˜Haval =H

a
val. Admittedly this is an extreme ex-

ample, since in all analyses [43, 45, 46] the polarized d-
quark distribution is negative. Another, more moder-
ate example is set by the assumption ˜Huval = H

u
val and

˜Hdval = −H
d
val, implying d quarks with dominantly anti-

parallel helicity. The results obtained from these two sce-
narios are also shown in Fig. 12. Obviously, it seems dif-
ficult to obtain agreement with the HERMES result [35,
36] with GPDs constructed from the double distribution
ansatz, except when extreme scenarios are realized in
nature.
The size of the amplitudeMU can be elucidated further

by considering the initial state helicity correlation ALL,
which can be measured with a longitudinally polarized
beam and target. In contrast to cross sections and SDMEs,
where the corrections are bilinear in the MU terms and,
hence, very small, the leading term in ALL is an interfer-
ence between the MN and the MU amplitudes. In fact,
with the help of parity conservation as well as (9) and (10),
one obtains [1]

ALL[ep→ eV p] = 4
√

1− ε2
Re
[

MN
++,++M

U∗
++,++

]

NT+ εNL
.

(55)

We stress that here the target polarization is specified rela-
tive to the virtual photon direction, while in experiment it
is usually defined with respect to the lepton beam direc-
tion. The conversion from our specification to the one used

in experiments leads to a factor cos θγ in (55) [47], where
θγ denotes the angle describing the rotation in the lepton
plane from the direction of the incoming lepton to the one
of the virtual photon. This angle is given by [47]

cos θγ =

√

1−γ2
1−y−y2γ2/4

1+γ2
� 1−

1

2
γ2(1−y) .

(56)

The two parameters appearing in (56) are y = (W 2+Q2−
m2)/(s−m2), one of the conventional variables of elec-
troproduction, and γ = 2xBjm/Q. In the kinematical situ-
ation of interest γ is very small and, hence, cos θγ � 1.
According to (18) ALL is of order 〈k2⊥〉/Q

2, and, there-
fore, expected to be very small. In Fig. 12 our results
for ρ production are shown at W = 5 and 10 GeV. For
the lower energy the valence-quark contribution generates
values forALL of about 0.1, while at 10 GeV only extremely
small values are found. The valence-quark contribution has
nearly disappeared at that energy and, as we mentioned
above, the gluon and sea-quark contributions cancel each
other to a large extent. For instance, at W = 5GeV and
Q2 = 3GeV2, ALL(ρ) changes by −0.002 if the gluon and
sea quarks are neglected. Because of the very small com-
bined gluon and sea contributions we also predict very
small values of ALL(φ). For instance, at W = 5(10)GeV
andQ2 = 3GeV2, ALL(φ) =−0.002(−0.007).
Recently, the COMPASS collaboration has measured

ALL for ρ production [48]. For Q
2 less than 2 GeV2

COMPASS observes very small values for ALL, which are
compatible with zero. Their only data point for which its
Q2 is sufficiently large for application of the handbag ap-
proach is inconclusive, because of its extremely large error;
it is at variance with our results by about 1σ; see Fig. 12.
The HERMES results on this observable for ρ and φ pro-
duction [49] is in agreement with our predictions. The SMC
experiment [50] observes a double spin asymmetry for ρ
production atW = 15GeV that is compatible with our re-
sults within large errors. In passing, we remark that ALL
is sensitive to the relative phase δNU between the ampli-
tudesMN

++,++ andM
U
++,++. Therefore, a large value of
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σU is not necessarily in contradiction with a small value of
ALL, provided the phase is near 90

◦. Nevertheless, in our
approach the phase is small. For instance, at W = 5GeV
and Q2 = 3GeV2 we find δNU = 3.7

◦, i.e. a large value of
σU would go along with a large value of ALL in our ap-
proach. For instance, a scenario with ˜Haval =H

a
val leads to

ALL(ρ) = 0.14 for this kinematical point of reference.
Let us return to the issue of the size of the combined

gluon and sea contribution to the unnatural parity am-
plitude. Up to know we have assumed that this combined
contribution is very small as follows from the double dis-
tribution ansatz using current polarized PDFs. One may
wonder whether these PDFs are really correct or whether
the smallness of the combined gluon and sea contribution is
perhaps a special feature of our double distribution ansatz
for ˜H. First we note that in all current analyses of the
polarized PDFs [43, 45, 46] ∆g and the polarized sea have
opposite signs and are rather small in magnitude.7 In par-
ticular a large positive ∆g is in conflict with measurements
of the ALL asymmetry in the production of jets [51] and π

0

mesons [52] in inclusive proton–proton collisions. A nega-
tive polarized sea is for instance seen in the HERMES
semi-inclusive deep inelastic scattering data [53]. Thus, we
think that the main features of the polarized PDFs are cor-
rect. A small combined gluon and sea contribution from
˜H seems to be required by the relevant data too. Leav-
ing aside the HERMES results on σU and ALL for ρ pro-
duction, which receive contributions from ˜Hval, we note
that all other pertinent data are small and in most cases
compatible with zero. These data are σU (ρ) from H1 [25]
and ZEUS [24], the same cross section for φ production
from HERMES [37] and H1 [32] and finally the ALL data
from Compass [48] and SMC [50]. Thus, scenarios in which
the combined gluon and sea-quark contribution is large in
magnitude seem to be excluded by the current data. Our
double distribution ansatz for ˜Hg and ˜Hsea, as naive it may
be, qualitatively reproduces the main features of the data.

7 Proton helicity flip

The analysis of observables for vector-meson electropro-
duction measured with a transversely polarized proton tar-
get requires the proton helicity-flip amplitude. The hand-
bag contribution to this amplitude is given by

MNi
µ−,µ+(V ) =−

e

2

√
−t

2m

∑

a

eaC
a
V

×

∫ 1

x̄i

dx̄
[

HV iµ+,µ++H
V i
µ−,µ−

]

Ei(x̄, ξ, t) ,

(57)

where tmin is ignored. Our choice of the phase of this ampli-
tude is in accord with the conventions exploited in [41, 47].
In general there is also a contribution from the GPD ˜E,
feeding the amplitudeMUi

+−,++. It is expected to be small

7 A negative ∆g is also discussed in [45].

and neglected in our estimate of the size of the proton
helicity-flip amplitude. The evaluation ofMN for proton
helicity flip is analogous to that of the non-flip ampli-
tude (3), except that the convolution is now to be per-
formed with the GPD E instead of H. The construction
of E through double distributions is also analogous to that
of H; see Sect. 3. The only but crucial difference is that
the forward limit e(x) = E(x, 0, 0) is inaccessible in deep
inelastic lepton–nucleon scattering. However, the forward
limits of the valence-quark GPDs have been determined
phenomenologically in the form factor analysis performed
in [9]. The parameters of euval and e

d
val expanded according

to (51), are taken from [9]. They are quoted in Table 4 at
a scale of 4 GeV2. For other scales these functions are un-
known, which does not matter here since we will estimate
proton helicity flip only for photon virtualities near that
value. Note that in contrast to uval and dval, e

u
val and e

d
val

have opposite signs. This is due to the fact that they are
normalized by

∫ 1

0

dx eaval(x) = κa , (58)

where κa gives the contribution of quark flavor a to the
anomalous magnetic moment of the proton (κu � 1.67,
κd � −2.03). The forward limits of E for gluons and sea
quarks are unknown. But there is a sum rule,

∫ 1

0

dxxeg(x) =−
∑

a

∫ 1

0

dxxeaval(x)

−2
∑

a

∫ 1

0

dxxeā(x) , (59)

which follows from a combination of Ji’s sum rule and the
momentum sum rule of deep inelastic lepton–nucleon scat-
tering [12]. Neglecting a possible difference between es and
es̄, we can evaluate the valence-quark term in the sum
rule (59) from the GPDs specified in Table 4. We obtain

∑

a

∫ 1

0

dxxeaval(x) = 0.008±0.007 . (60)

This signals a remarkable compensation between the sec-
ond moments of euval and e

d
val

∫ 1

0 dxx[e
u
val+ e

d
val]

∫ 1

0 dxx[e
u
val− e

d
val]
� 0.026 , (61)

which is even stronger than that of their first moments
((κu+κd)/(κu−κd)� 0.1). The error in (60) has been es-
timated from those quoted in [9]. Hence, the moment of eg

in (60) is only about as large as the sum of the sea-quark
moments. This is to be contrasted with the situation for
H, where the corresponding gluon moment is more than
four times larger than the sum of the sea-quark ones. An-
other argument that points into the same direction is the
behavior of the gluon (or pomeron) Regge trajectory. As
is well known, this trajectory couples mainly to the pro-
ton helicity-non-flip vertex, while the flip coupling is very
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small. It is hard to find phenomenological evidence for
a non-zero flip coupling [54]. Thus, the relative importance
of gluon and valence-quark GPDs is very different for E
and H. It seems unlikely that Eg plays an analogously
prominent role as Hg. In a first step we therefore assume
that, for HERMES kinematics, proton helicity flip is dom-
inated by the valence quarks [16]. Since the same Regge
poles contribute toE andH, we therefore use the standard
valence-quark trajectory here as well and assume beval = 0,
too. With regard to this situation we cannot estimate the
size of proton helicity flip for φ production, but we expect
it to be very small. We stress that due to the opposite signs
of Euval and E

d
val, their contribution to ρ production off pro-

tons, ∝ euEuval− edE
d
val, is much smaller than that from

the corresponding contribution of Haval. This provides an
additional justification for the neglect of E in the proton
helicity-non-flip amplitude (see discussion after (2)). An
interesting case is ω production, since for this case the com-
binations euE

u
val+ edE

d
val and euH

u
val+ edH

d
val occur. The

first combination is larger, the second one smaller than for
ρ production and, hence, a markedly larger ratio of proton
helicity flip and non-flip is expected for ω production. For
instance, at Q2 = 4GeV2 andW = 5GeV the flip/non-flip
ratio of the absolute values of the ω amplitudes is about 13
times larger than the corresponding ratio for ρ production.
Recently the formalism for the SDMEs in the case of

a proton target polarized perpendicular (‘normal’) with re-
spect to the plane in which the scattering γ∗p→ V p takes
place has been developed [41]. These SDMEs are denoted
by nσσ

′

µµ′ and are related to bilinear combinations of the
amplitudes for the helicities µ, µ′ and σ, σ′ of the virtual
photon and the meson, respectively:

nσσ
′

µµ′ =
1

NT+ εNL

∑

ν′

[

Mσν′,µ+M
∗
σ′ν′,µ′−

−Mσν′,µ−M
∗
σ′ν′,µ′+

]

. (62)

If one neglects the amplitudesMU in accord with our find-
ings described in Sect. 6, as well as the helicity-flip transi-

Fig. 13. Left: the imaginary parts of the SDMEs n0000 (solid), n
++
++ (dashed) and n

0+
0+ (dash-dotted line), scaled by 2m/

√
−t, for �

production versus Q2 atW = 5GeV. The error band is only shown for n0000. Right: the asymmetry AUT, scaled by 2m/
√
−t, for �

production versus Q2 atW = 5GeV. The dashed line represents the leading-twist contribution

tions γ∗→ V only the SDMEs

nµµ
′

µµ′
=

2

NT+ εNL

∑

ν′

MN
µν′,µ+M

N∗
µ′ν′,µ′− , (63)

are non-zero. Explicitly these SDME read

n0000 =
4i

NT+ εNL
Im
[

MN
0−,0+M

N∗
0+,0+

]

,

n++++ = n
−+
−+ =

4i

NT+ εNL
Im
[

MN
+−,++M

N∗
++,++

]

,

n0+0+ =−(n
+0
+0)

∗

=
2

NT+ εNL

[

MN
0−,0+M

N∗
++,++−M

N
0+,0+M

N∗
+−,++

]

.

(64)

For non-zero SDMEs nµµ
′

µµ′
phase differences between the

proton helicity-flip and -non-flip amplitudes are manda-
tory. Such phase differences are provided by the handbag
approach, since the non-flip amplitudes are built up by
gluons and quarks, while the flip amplitudes receive only
contributions from the valence quarks in our model for the
GPD E. Indeed we obtain the values 38.8◦ and 34.7◦ for
the phase between the proton flip and non-flip amplitudes
in the case of longitudinal and transverse photon polariza-
tion, respectively. In Fig. 13 the SDMEs (64) are shown
versus Q2 at W = 5GeV, and the trivial factor

√
−t/2m,

see (57), is pulled out and t set to zero otherwise. The
scaled SDMEs are small, of the order of five percent. These
SDMEs will be measured by HERMES.
One may also consider transverse proton polarization

lying in the γ∗p→ V p plane (‘sideways’). In this case
SDMEs, denoted by sσσ

′

µµ′ [41], occur that are analogous
to (62) but with a plus sign between the two terms. The

SDMEs sµµ
′

µµ′
for photon–meson helicity non-flip are given

by products of two small amplitudes,MN for proton he-
licity flip and MU . They are therefore very small in our
approach.
Finally, we estimate the asymmetry AUT of ep→ eV p

for a transversely polarized target, normal to the γ∗p→ V p
scattering plane. It is measured as the sin (φ−φS) moment
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of the electroproduction cross section where φ is the azi-
muthal angle between the lepton and hadron plane and φS
the azimuthal angle of the target spin vector defined with
respect to the direction of the virtual photon [41]. As for
the asymmetry ALL the conversion of this spin vector into
the one used in the experimental setup where the target
polarization is specified relative to the lepton beam, again
leads to a factor cos θγ in principle. According to the dis-
cussion following (56) it is replaced by one. In the handbag
approach the dominant contribution to this asymmetry
reads

AUT(ep→ eV p)

= 4
Im
[

MN
+−,++M

N∗
++,++

]

+ εIm
[

MN
0−,0+M

N∗
0+,0+

]

NT+ εNL
.

(65)

It is just the imaginary part of the sum of n++++ and εn
00
00

and is also proportional to
√
−t/2m. We again pull out

the latter factor and display the scaled asymmetry, evalu-
ated at t= 0, in Fig. 13. We obtain a positive asymmetry.
In contrast to ALL it is finite to leading-twist order, which
is obtained from (65) by neglecting the contributions from
transverse photons and evaluating those from longitudinal
photons in collinear approximation. For comparison, the
leading-twist contribution is also shown in Fig. 13. It is not
too different from the full result. A preliminary HERMES
result [55] for ρ production, integrated on the range 0≥
−t ≥ 0.4 GeV2, is −0.033± 0.058 at Q2 = 3.07 GeV2 and
W = 5GeV, while we find 0.02±0.01 for this kinematical
situation. Note that the scaled asymmetry is still t depen-
dent, although mildly so. Ignoring this and integrating just√
−t one makes an error of about 10% at Q2 � 3–4 GeV2.
For ω production AUT is about 10 times larger than for
ρ production. For φ production, on the other hand, we
expect a very small asymmetry since the gluon and sea con-
tributions are not only small but cancel each other to some
extent, see (59).
The asymmetry AUL for an unpolarized beam and

a longitudinally polarized target is given by the same ex-
pression as AUT. Only the mentioned conversion factor
cos θγ is to be replaced by sin θγ which is very small [47].
The beam asymmetry ALU obtained with a logitudinally
polarized beam and an unpolarized target is zero given
that helicity-flip γ∗→ V transitions can be neglected.

8 Summary

Together with [3] this work gives an exhaustive descrip-
tion of light vector-meson electroproduction within the
handbag approach for a wide range of kinematics reach-
ing from the HERMES up to the HERA kinematical set-
tings. Our handbag approach includes power corrections
which suppress the leading-twist amplitude for γ∗L→ VL
transitions and allows for a calculation of the transverse
amplitude γ∗T→ VT. In order to specify our handbag ap-
proach fully we have to mention the soft physics input,
namely the GPDs that are constructed from PDFs with

the help of double distributions, and the light-cone wave
functions for the mesons. GPDs and wave functions affect
the handbag amplitudes differently and can therefore be
disentangled. The wave functions provide effects of order
〈k2⊥〉/Q

2 controlled by the transverse size parameter aV
while the GPDsmainly influence the xBj dependence of the
amplitudes or, at fixedQ2, theW dependence. Besides the
dominant contributions from the GPD H (’natural pari-
ty’ contribution) we also estimated effects from the GPDs
˜H (’unnatural parity’ contribution) and E controlling the
proton helicity-flip amplitudes. These effects are generally
small. With our analysis we achieve a very good descrip-
tion of the HERA, HERMES and COMPASS data on the
separated and non-separated cross sections for ρ and φ
electroproduction, on the ratio σL/σT, on the SDMEs and
on some spin asymmetries. The only problem we observed
is that the relative phase between the longitudinal and
transverse amplitudes seems to be larger in experiment, in
particular in the HERMES experiment [35, 36], than our
handbag approach predicts. The neglect of contributions
from transitions other than γ∗L→ VL and γ

∗
T→ VT to the

cross sections seems to be justified. Only little contribu-
tions from γ∗T→ VL transitions are to be observed in some
of the SDMEs experimentally. We note that in [56] the
longitudinal amplitude has also been analyzed within the
handbag approach. The main difference to our work is that
in [56] the gluonic contribution is treated in leading-log
approximation [57] and added incoherently to the quark
amplitudes. This line of action underestimates the gluonic
contribution at low energies.
The applicability of our approach is limited to

Q2 � 3–4 GeV2, W � 4–5 GeV and xBj � 0.2. The restric-
tion of Q2 is due to the mentioned – and still unsettled –
difficulties with higher order perturbative corrections as
well as due to the neglected corrections of order m2/Q2

and −t/Q2. There may be also power corrections of other
dynamical origin which become large at low Q2. The re-
striction of W has its origin in the asymmetric minimum
the cross sections exhibit atW � 3–4 GeV. While the cross
sections [24, 25, 34, 58] mildly increase towards larger W ,
they [35, 36, 59, 60] increase sharply in the opposite direc-
tion. In fact they rise by nearly an order of magnitude
between W � 4 and 2 GeV. Obviously, a new dynamical
mechanism seems to set in and the handbag physics is per-
haps not applicable here. On the other side, it dominates
forW � 4 GeV. The mild increase of the cross sections with
energy beyond the minimum is well described by the hand-
bag physics as the results presented in this article and in [3]
reveal. The restriction of xBj is of difference quality. It al-
lows to neglect contributions of order x2Bj or ξ

2, e.g. in (1),
which simplifies the analysis of vector-meson electropro-
duction strongly.
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